Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomedicines ; 11(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2251757

RESUMEN

BACKGROUND: Several cases of skin and central nervous system vasculopathy associated with COVID-19 in children have been published, but the information is rather limited. Our study aimed to describe these cases of vasculitis associated with COVID-19 in children. METHODS: In the retrospective-prospective case series study we included information regarding four children with COVID-19-associated vasculitis. In every case, we had a morphological description and the etiology was confirmed via real-time polymerase chain reaction during a tissue biopsy. RESULTS: The most involved systems were skin (4/4), respiratory (3/4), cardiovascular (2/4), nervous (1/4), eye (1/4), kidney (1/4), and inner year (1/4). All patients had increased inflammatory markers and thrombotic parameters (D-dimer). No patient met the criteria for multisystem inflammatory syndrome in children. Two patients met polyarteritis nodosa criteria, one met Henoch-Schonlein purpura criteria, and one met unclassified vasculitis criteria. All patients were treated with systemic glucocorticosteroids (two-pulse therapy). Non-biologic DMARDs were prescribed in all cases; 1/4 patients (25%) was treated with intravenous immunoglobuline, and 3/4 (75%) were treated with biologics (etanercept, tocilizumab, and adalimumab). CONCLUSIONS: Vasculitis associated with COVID-19 could be a life-threatening condition; SARS-CoV-2 might be a new trigger or etiological agent for vasculitis and other immune-mediated diseases. Further research and collection of similar cases are required.

2.
Nat Commun ; 14(1): 149, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2185821

RESUMEN

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
3.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2163443

RESUMEN

Whole genome sequencing (WGS) is considered the best instrument to track both virus evolution and the spread of new, emerging variants. However, WGS still does not allow the analysis of as many samples as qPCR does. Epidemiological and clinical research needs to develop advanced qPCR methods to identify emerging variants of SARS-CoV-2 while collecting data on their spreading in a faster and cheaper way, which is critical for introducing public health measures. This study aimed at designing a one-step RT-qPCR assay for multiplex detection of the Omicron lineage and providing additional data on its subvariants in clinical samples. The RT-qPCR assay demonstrated high sensitivity and specificity on multiple SARS-CoV-2 variants and was cross-validated by WGS.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Bioensayo , Salud Pública
4.
ChemMedChem ; 17(20): e202200382, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2013440

RESUMEN

Nucleic acid-based detection of RNA viruses requires an annealing procedure to obtain RNA/probe or RNA/primer complexes for unwinding stable structures of folded viral RNA. In this study, we designed a protein-enzyme-free nano-construction, named four-armed DNA machine (4DNM), that requires neither an amplification stage nor a high-temperature annealing step for SARS-CoV-2 detection. It uses a binary deoxyribozyme (BiDz) sensor incorporated in a DNA nanostructure equipped with a total of four RNA-binding arms. Additional arms were found to improve the limit of detection at least 10-fold. The sensor distinguished SARS-CoV-2 from other respiratory viruses and correctly identified five positive and six negative clinical samples verified by quantitative polymerase chain reaction (RT-qPCR). The strategy reported here can be used for the detection of long natural RNA and can become a basis for a point-of-care or home diagnostic test.


Asunto(s)
COVID-19 , ADN Catalítico , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
PLoS One ; 17(7): e0270717, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1951546

RESUMEN

In 2021, the COVID-19 pandemic was characterized by global spread of several lineages with evidence for increased transmissibility. Throughout the pandemic, Russia has remained among the countries with the highest number of confirmed COVID-19 cases, making it a potential hotspot for emergence of novel variants. Here, we show that among the globally significant variants of concern that have spread globally by late 2020, alpha (B.1.1.7), beta (B.1.351) or gamma (P.1), none have been sampled in Russia before the end of 2020. Instead, between summer 2020 and spring 2021, the epidemic in Russia has been characterized by the spread of two lineages that were rare in most other countries: B.1.1.317 and a sublineage of B.1.1 including B.1.1.397 (hereafter, B.1.1.397+). Their frequency has increased concordantly in different parts of Russia. On top of these lineages, in late December 2020, alpha (B.1.1.7) emerged in Russia, reaching a frequency of 17.4% (95% C.I.: 12.0%-24.4%) in March 2021. Additionally, we identify three novel distinct lineages, AT.1, B.1.1.524 and B.1.1.525, that have started to spread, together reaching the frequency of 11.8% (95% C.I.: 7.5%-18.1%) in March 2021. These lineages carry combinations of several notable mutations, including the S:E484K mutation of concern, deletions at a recurrent deletion region of the spike glycoprotein (S:Δ140-142, S:Δ144 or S:Δ136-144), and nsp6:Δ106-108 (also known as ORF1a:Δ3675-3677). Community-based PCR testing indicates that these variants have continued to spread in April 2021, with the frequency of B.1.1.7 reaching 21.7% (95% C.I.: 12.3%-35.6%), and the joint frequency of B.1.1.524 and B.1.1.525, 15.2% (95% C.I.: 7.6%-28.2%). Although these variants have been displaced by the onset of delta variant in May-June 2021, lineages B.1.1.317, B.1.1.397+, AT.1, B.1.1.524 and B.1.1.525 and the combinations of mutations comprising them that are found in other lineages merit monitoring.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Mutación , Pandemias , Federación de Rusia/epidemiología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
6.
Virus Evol ; 8(1): veac017, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1774419

RESUMEN

Delta has outcompeted most preexisting variants of SARS-CoV-2, becoming the globally predominant lineage by mid-2021. Its subsequent evolution has led to the emergence of multiple sublineages, most of which are well-mixed between countries. By contrast, here we show that nearly the entire Delta epidemic in Russia has probably descended from a single import event, or from multiple closely timed imports from a single poorly sampled geographic location. Indeed, over 90 per cent of Delta samples in Russia are characterized by the nsp2:K81N + ORF7a:P45L pair of mutations which is rare outside Russia, putting them in the AY.122 sublineage. The AY.122 lineage was frequent in Russia among Delta samples from the start, and has not increased in frequency in other countries where it has been observed, suggesting that its high prevalence in Russia has probably resulted from a random founder effect rather than a transmission advantage. The apartness of the genetic composition of the Delta epidemic in Russia makes Russia somewhat unusual, although not exceptional, among other countries.

7.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1308465

RESUMEN

Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from "Sputnik V"-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow.

8.
Nat Commun ; 12(1): 649, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1054021

RESUMEN

The ongoing pandemic of SARS-CoV-2 presents novel challenges and opportunities for the use of phylogenetics to understand and control its spread. Here, we analyze the emergence of SARS-CoV-2 in Russia in March and April 2020. Combining phylogeographic analysis with travel history data, we estimate that the sampled viral diversity has originated from at least 67 closely timed introductions into Russia, mostly in late February to early March. All but one of these introductions were not from China, suggesting that border closure with China has helped delay establishment of SARS-CoV-2 in Russia. These introductions resulted in at least 9 distinct Russian lineages corresponding to domestic transmission. A notable transmission cluster corresponded to a nosocomial outbreak at the Vreden hospital in Saint Petersburg; phylodynamic analysis of this cluster reveals multiple (2-3) introductions each giving rise to a large number of cases, with a high initial effective reproduction number of 3.0 [1.9, 4.3].


Asunto(s)
Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/transmisión , Genoma Viral/genética , SARS-CoV-2/genética , Humanos , Tasa de Mutación , Filogeografía , Federación de Rusia/epidemiología , Secuenciación Completa del Genoma
9.
Euro Surveill ; 25(32)2020 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-721443

RESUMEN

We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Coronavirus/genética , Genoma Viral/genética , Pandemias , Neumonía Viral/epidemiología , ARN Viral/análisis , ARN Polimerasa Dependiente del ARN/genética , Secuencia de Bases , Betacoronavirus/patogenicidad , COVID-19 , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Europa (Continente)/epidemiología , Humanos , Filogeografía , Neumonía Viral/virología , ARN Viral/genética , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave , Análisis Espacio-Temporal , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA